NESSi
v1.0.2
The NonEquilibrium Systems Simulation Library
|
|
inline |
Returns the Gregory weights for integration.
The Gregory integration formula of order \(k\) is defined by
\begin{align*} \int^{x_m}_0 dx \, f(x) = \sum^{\mathrm{max}(k,m)}_{l=0} w_{m,l}\, f(x_l) \end{align*}
For \(m > 2 k\), the weights have a simpler form:
\begin{align*} w_{m,j} = \begin{cases} \omega_j & : j \le k \\ 1 & : k < j < m-k \\ \omega_{m-j} & : j \ge m-k \end{cases} \end{align*}
Here, \(\omega_j\) are tabulated weights for \(0 \le j \le k\).
gregory_weights
returns \(w_{n,j}\) for given \(n, j\).
n |
|
j |
|
Definition at line 382 of file integration.hpp.