 NESSi  v1.0.2 The NonEquilibrium Systems Simulation Library

## ◆ get_ret() [1/4]

template<typename T >
 void get_ret ( const int i, const int j, std::complex< T > & G_ret, herm_matrix_timestep_view< T > & G, herm_matrix_timestep_view< T > & Gcc )
inline

Returns the retarded component of a general contour function at given times.

Purpose

Returns the retarded component $$G^\mathrm{R}(t_i,t_j)$$ at given times $$t_i$$ and $$t_j$$. We assume $$G^\mathrm{R}(t_i,t_j)$$ can be analytically continued to $$j > i$$, for which the hermitian conjugate $$G^\ddagger$$ is used.

Parameters
 i [int] Index of time $$t_i$$ . j [int] Index of time $$t_j$$ . G_ret [complex] The retarded component (scalar GF). G [herm_matrix_timestep_view] Contour function G Gcc [herm_matrix_timestep_view] Hermitian conjugate $$G^\ddagger$$ of $$G$$.

Definition at line 252 of file cntr_getset_herm_matrix_timestep_view_inc.hpp.

Referenced by get_gtr(), and get_ret().

253  {
254  assert(i <= G.tstp() && j <= G.tstp());
255  assert(i == G.tstp() || j == G.tstp());
256  assert(i <= Gcc.tstp() && j <= Gcc.tstp());
257  assert(i == Gcc.tstp() || j == Gcc.tstp());
258  assert(G.tstp() == Gcc.tstp());
259  assert(G.ntau() == Gcc.ntau());
260  assert(G.size1() == Gcc.size1());
261  assert(G.size2() == Gcc.size2());
262  assert(G.sig() == Gcc.sig());
263
264  if (G.tstp() == i){
265  G_ret = *G.retptr(j);
266  } else if (G.tstp() == j) {
267  G_ret = *Gcc.retptr(i);
268  G_ret = -std::conj(G_ret);
269  }
270 } Here is the caller graph for this function: