 NESSi  v1.0.2 The NonEquilibrium Systems Simulation Library

## ◆ get_les() [9/12]

template<typename T >
 void cntr::get_les ( const int i, const int j, std::complex< T > & G_les, herm_matrix_timestep_view< T > & G, herm_matrix_timestep_view< T > & Gcc )
inline

Returns the lesser component of a general contour function at given times.

Purpose

Returns the lesser component $$G^<(t_i,t_j)$$ at given times $$t_i$$ and $$t_j$$. For $$i > j$$ the hermitian conjugate $$G^\ddagger$$ is used.

Parameters
 i [int] Index of time $$t_i$$ . j [int] Index of time $$t_j$$ . G_les [complex] The lesser component (scalar GF). G [herm_matrix_timestep_view] Contour function G Gcc [herm_matrix_timestep_view] Hermitian conjugate $$G^\ddagger$$ of $$G$$.

Definition at line 154 of file cntr_getset_herm_matrix_timestep_view_inc.hpp.

Referenced by get_gtr(), and get_les().

155  {
156  assert(i <= G.tstp() && j <= G.tstp());
157  assert(i == G.tstp() || j == G.tstp());
158  assert(i <= Gcc.tstp() && j <= Gcc.tstp());
159  assert(i == Gcc.tstp() || j == Gcc.tstp());
160  assert(G.tstp() == Gcc.tstp());
161  assert(G.ntau() == Gcc.ntau());
162  assert(G.size1() == Gcc.size1());
163  assert(G.size2() == Gcc.size2());
164  assert(G.sig() == Gcc.sig());
165
166  if (G.tstp() == j){
167  G_les = *G.lesptr(i);
168  } else if (G.tstp() == i) {
169  G_les = *Gcc.lesptr(j);
170  G_les = -std::conj(G_les);
171  }
172 } Here is the caller graph for this function: