NESSi  v1.0.2
The NonEquilibrium Systems Simulation Library

◆ Bubble1() [4/4]

template<class GGC , class GGA , class GGB >
void cntr::Bubble1 ( int  tstp,
GGC &  C,
GGA &  A,
GGB &  B 
)

Evaluate a bubble diagram ( \(C\)) from two-time contour functions \(A,B\) at the time step; \( C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1) \).

Purpose

Evaluate the two-time contour function \(C\) represented as a bubble diagram with two-time functions \(A,B\); \( C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1) \). Here it is assmued that \(A\), \(B\) and \(C\) are \(1\times 1\) matrices. This evaluation is done at the time step (i.e. \( t_1 \) or \( t_2 \) is the time step) for all components (retarded, lesser, left-mixing and Matsubara). The evaluated value of \( i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1)\) is stored at \( C_{0,0}(t_1,t_2)\). Here \(A\) and \(B\) are assumed to have the hermitian symmetry.

Parameters
tstp

Time step.

C

Two-time contour object in the \(1\times 1\)-Matrix form defined as \( C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1) \).

A

Two-time contour object in the \(1\times 1\)-Matrix form with the hermitian symmetry.

B

Two-time contour object in the \(1\times 1\)-Matrix form with the hermitian symmetry.

Definition at line 223 of file cntr_bubble_impl.hpp.

References Bubble1().

223  {
224  herm_matrix_timestep_view<typename GGC::scalar_type> ctmp(tstp, C);
225  herm_matrix_timestep_view<typename GGA::scalar_type> atmp(tstp, A);
226  herm_matrix_timestep_view<typename GGB::scalar_type> btmp(tstp, B);
227  Bubble1(tstp, ctmp, atmp, btmp);
228 }
void Bubble1(int tstp, GGC &C, int c1, int c2, GGA &A, GGA &Acc, int a1, int a2, GGB &B, GGB &Bcc, int b1, int b2)
Evaluate a bubble diagram ( ) from two-time contour functions at the time step; ...
+ Here is the call graph for this function: