NESSi  v1.0.2 The NonEquilibrium Systems Simulation Library

## ◆ Bubble1() [4/4]

template<class GGC , class GGA , class GGB >
 void cntr::Bubble1 ( int tstp, GGC & C, GGA & A, GGB & B )

Evaluate a bubble diagram ( $$C$$) from two-time contour functions $$A,B$$ at the time step; $$C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1)$$.

Purpose

Evaluate the two-time contour function $$C$$ represented as a bubble diagram with two-time functions $$A,B$$; $$C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1)$$. Here it is assmued that $$A$$, $$B$$ and $$C$$ are $$1\times 1$$ matrices. This evaluation is done at the time step (i.e. $$t_1$$ or $$t_2$$ is the time step) for all components (retarded, lesser, left-mixing and Matsubara). The evaluated value of $$i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1)$$ is stored at $$C_{0,0}(t_1,t_2)$$. Here $$A$$ and $$B$$ are assumed to have the hermitian symmetry.

Parameters
 tstp Time step. C Two-time contour object in the $$1\times 1$$-Matrix form defined as $$C_{0,0}(t_1,t_2) = i A_{0,0}(t_t,t_2) * B_{0,0}(t_2,t_1)$$. A Two-time contour object in the $$1\times 1$$-Matrix form with the hermitian symmetry. B Two-time contour object in the $$1\times 1$$-Matrix form with the hermitian symmetry.

Definition at line 223 of file cntr_bubble_impl.hpp.

References Bubble1().

223  {
224  herm_matrix_timestep_view<typename GGC::scalar_type> ctmp(tstp, C);
225  herm_matrix_timestep_view<typename GGA::scalar_type> atmp(tstp, A);
226  herm_matrix_timestep_view<typename GGB::scalar_type> btmp(tstp, B);
227  Bubble1(tstp, ctmp, atmp, btmp);
228 }
void Bubble1(int tstp, GGC &C, int c1, int c2, GGA &A, GGA &Acc, int a1, int a2, GGB &B, GGB &Bcc, int b1, int b2)
Evaluate a bubble diagram ( ) from two-time contour functions at the time step; ...
Here is the call graph for this function: