NESSI  v1.1.2 The NonEquilibrium Systems SImulation Library

## ◆ vie2()

template<typename T >
 void cntr::vie2 ( herm_matrix< T > & G, herm_matrix< T > & F, herm_matrix< T > & Fcc, herm_matrix< T > & Q, integration::Integrator< T > & I, T beta, T h, const int matsubara_method )

One step VIE solver $$(1+F)*G=Q$$ for a Green's function $$G$$

Purpose

One solves the linear equation $$(1+F)*G=Q$$ for a hermitian matrix $$G(t, t^\prime)$$ with given $$F(t, t^\prime)$$ and $$Q(t, t^\prime)$$. Here, one calls the routines 'vie2_mat()', 'vie2_start()', 'vie2_timestep'.

Parameters
 &G [herm_matrix] solution &F [herm_matrix] green's function on left-hand side &Fcc [herm_matrix] Complex conjugate of F &Q [herm_matrix] green's function on right-hand side I [Integrator] integrator class beta [double] inverse temperature h [double] time interval matsubara_method [const] Solution method on the Matsubara axis with 0: Fourier, 1: steep, 2: fixpoint

Definition at line 1451 of file cntr_vie2_impl.hpp.

1452  {
1453  int tstp, k = I.k();
1454  vie2_mat(G, F, Fcc, Q, beta, I, matsubara_method);
1455  // vie2_mat(G,F,Fcc,Q,beta,3);
1456  if (G.nt() >= 0)
1457  vie2_start(G, F, Fcc, Q, I, beta, h);
1458  for (tstp = k + 1; tstp <= G.nt(); tstp++)
1459  vie2_timestep(tstp, G, F, Fcc, Q, I, beta, h);
1460 }
void vie2_mat(herm_matrix< T > &G, herm_matrix< T > &F, herm_matrix< T > &Fcc, herm_matrix< T > &Q, T beta, integration::Integrator< T > &I, const int method=CNTR_MAT_FIXPOINT)
VIE solver for a Green&#39;s function on the Matsubara axis
void vie2_start(herm_matrix< T > &G, herm_matrix< T > &F, herm_matrix< T > &Fcc, herm_matrix< T > &Q, integration::Integrator< T > &I, T beta, T h)
VIE solver for a Green&#39;s function for the first k timesteps
Integrator< T > & I(int k)
void vie2_timestep(int n, herm_matrix< T > &G, herm_matrix< T > &F, herm_matrix< T > &Fcc, herm_matrix< T > &Q, integration::Integrator< T > &I, T beta, T h, const int matsubara_method=CNTR_MAT_FIXPOINT)
One step VIE solver for a Green&#39;s function at a given timestep
Here is the call graph for this function: