Evaluate a bubble diagram ( \(C\)) from two-time contour functions \(A,B\) at the time step; \( C_{c_1,c_2}(t_1,t_2) = i A_{a_1,a_2}(t_t,t_2) * B_{b_2,b_1}(t_2,t_1) \).
- Purpose
Evaluate the two-time contour function \(C\) represented as a bubble diagram with two-time functions \(A,B\); \( C_{c_1,c_2}(t_1,t_2) = i A_{a_1,a_2}(t_t,t_2) * B_{b_2,b_1}(t_2,t_1) \). This evaluation is done at the time step (i.e. \( t_1 \) or \( t_2 \) is the time step) for all components (retarded, lesser, left-mixing and Matsubara). The evaluated value of \( i A_{a_1,a_2}(t_t,t_2) * B_{b_2,b_1}(t_2,t_1)\) is stored at \( C_{c_1,c_2}(t_1,t_2)\).
- Parameters
-
tstp |
Time step.
|
C |
Two-time contour object in the Matrix form defined as \( C_{c_1,c_2}(t_1,t_2) = i A_{a_1,a_2}(t_t,t_2) * B_{b_2,b_1}(t_2,t_1) \).
|
c1 |
First index of the matrix \(C\).
|
c2 |
Second index of the matrix \(C\).
|
A |
Two-time contour object in the Matrix form.
|
Acc |
Two-time contour object in the Matrix form, which is adjoint of \(A\).
|
a1 |
First index of the matrix \(A\).
|
a2 |
Second index of the matrix \(A\).
|
B |
Two-time contour object in the Matrix form.
|
Bcc |
Two-time contour object in the Matrix form, which is adjoint of \(B\).
|
b1 |
'Second' index of the matrix \(B\).
|
b2 |
'First' index of the matrix \(B\).
|
Definition at line 194 of file cntr_bubble_impl.hpp.
Referenced by Bubble1().
196 herm_matrix_timestep_view<typename GGC::scalar_type> ctmp(tstp, C);
197 herm_matrix_timestep_view<typename GGA::scalar_type> atmp(tstp, A);
198 herm_matrix_timestep_view<typename GGA::scalar_type> acctmp(tstp, Acc);
199 herm_matrix_timestep_view<typename GGB::scalar_type> btmp(tstp, B);
200 herm_matrix_timestep_view<typename GGB::scalar_type> bcctmp(tstp, Bcc);
201 Bubble1(tstp, ctmp, c1, c2, atmp, acctmp, a1, a2, btmp, bcctmp, b1, b2);
void Bubble1(int tstp, GGC &C, int c1, int c2, GGA &A, GGA &Acc, int a1, int a2, GGB &B, GGB &Bcc, int b1, int b2)
Evaluate a bubble diagram ( ) from two-time contour functions at the time step; ...